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Mechanism Design

Mechanism Design = Algorithm Design + Incentives

Direct revelation mechanisms with dominant truthful strategies

Mechanism = (Allocation Rule, Payment Rule) = (f , p)

For which allocation rule (social choice function) are there payment
functions so that the resulting mechanism is truthful?

I Example: VCG mechanism ⇒ selecting the outcome with the
maximum total value
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Truthful Mechanisms

Definition (Truthful Mechanism)

A mechanism is truthful when the outcome and the payment functions are
s.t. the players gain nothing by not declaring their true values. This notion
of truthfulness is called dominant strategy truthfulness since declaring true
values is a dominant strategy for each player.

Theorem (Revelation Principle)

For every mechanism M that has dominant strategies, there is an
equivalent truthful mechanism M’ that for every bid vector chooses the
same outcome and pays the same amounts
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Related Machines

• Processing times of tasks: p1 ≥ ... ≥ pm

• Speeds: s1, ..., sn

• Workload assigned to machine i: wi

• Makespan: C (w , s) = maxi
wi
si

? It’s a typical single-parameter problem

? The optimal allocation is monotone ⇒ truthful

? But, it cannot be computed in polynomial time unless P = NP
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Unrelated Machines

• There are n machines and m tasks

• Machine i can execute task j in tij
• Allocate the tasks to machines to minimize the makespan

I Task j is allocated to exactly one i: ∀j ,
n∑

i=1

xij = 1

? The problem is NP-hard

? Nisan and Ronen (game theoretic point of view): each machine i is a
rational agent who is the only one knowing the values of ti
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Definition (Monotonicity Property)

An allocation algorithm f is called monotone if it satisfies the following
property: for every two sets of tasks t and t’ which differ only on machine i
(i.e., on the i-the row) the associated allocations x and x’ satisfy

(xi − x ′i ) · (ti − t ′i ) ≤ 0

where · denotes the dot product of the vectors, that is,
m∑
j=1

(xij − x ′ij) · (tij − t ′ij) ≤ 0

Theorem (Saks & Yu)

A mechanism (f , p) is truthful iff its allocation algorithm f satisfies the
Monotonicity Property.
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Upper Bounds - Results - Unrelated Machines

Nisan & Ronen (2001): n for any truthful deterministic mechanism

Nisan & Ronen (2001): 1.75 for randomized universally truthful
mechanism for 2 machines

Mualem & Shapira (2007): 0.875n randomized universally truthful
mechanism for n machines

Lu & Yu (2008): 1.67 and later 1.59 for randomized universally
truthful mechanism for n machines

Christodoulou et al. (2007): n+1
2 for fractional mechanisms (optimal

for task independent: A task-independent algorithm is any algorithm
that, in order to allocate task j, only considers the processing times tij
that concern the particular task.)
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Lower Bounds - Results - Unrelated Machines

Nisan & Ronen (2001): 2 for any truthful deterministic mechanism
for 2 machines

Christodoulou et al. (2007): 1 +
√

2 for three or more machines

Koutsoupias & Vidali (2007): 1 + φ = 2.61 for n machines

Mualem & Shapira (2007): 2− 1
n for randomized truthful in

expectation mechanisms

Christodoulou et al. (2007): 1 +
√

2 for fractional domains

Deterministic & Fractional mechanisms: tight bounds for 2 machines

Randomized mechanisms: GAP with 1.5 lower and 1.59 upper bound
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Lower Bounds - Unrelated Machines

Theorem

Let t be a set of tasks and let x = x(t) be the allocation produced by a
truthful mechanism. Suppose that we change only the processing times
of machine i in such a way that t ′ij > tij when xij = 0, and t ′ij < tij when
xij = 1. A truthful mechanism does not change the allocation to
machine i, i.e., xi (t

′) = xi (t).

Theorem

Any truthful mechanism has approximation ratio of at least 2 for two or
more machines.

Theorem

Any truthful mechanism has approximation ratio of at least 1 +
√

2 for
three or more machines.
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Example - Unrelated Machines

Exapmle 1: Let n = 2 and m = 3 and tij=1

Allocate all tasks to a single machine

t =

(
1 1 1
1 1 1

)
⇒ t ′ =

(
1− ε 1− ε 0

1 1 1

)
Then, 2(1−ε)

1 ≈ 2-approximation

Partition them: first two to machine 1 and the rest to machine 2

t =

(
1 1 1
1 1 1

)
⇒ t ′ =

(
1 1 1

1 + ε 1 + ε 0

)
Then, 2

1+ε ≈ 2-approximation
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General idea of proof 1 +
√

2 = 2.41

Let set of tasks for some parameter a > 1.

This set of tasks admits two distinct allocation

The first three tasks need to be assigned to a single machine

t =

 0 ∞ ∞ a a
∞ 0 ∞ a a
∞ ∞ 0 a a

⇒allocation t =

 0 ∞ ∞ 1 1
∞ 0 ∞ a a
∞ ∞ 0 a a

⇒

t ′ =

 a ∞ ∞ 1− ε 1− ε
∞ 0 ∞ a a
∞ ∞ 0 a a


Then, a+2

a ≈ 2.41-approximation, where a =
√

2
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Open Questions

? Characterize the set of truthful mechanisms for unrelated machines

? Close the gap between the lower 2.61 and the upper n bound on the
approximation ratio for unrelated machines

? Randomized & Fractional mechanisms

? Deterministic monotone PTAS exists for the related problem
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Online Mechanisms

Extend the methods of mechanism design to dynamic environments
with multiple agents and private information

Direct-revelation online mechanism

Truthful auctions for domains with expiring items and limited-supply
items

Secretary Problem

Dynamic VCG mechanism
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Dynamic Auction with Expiring Items

Discrete time periods: T = 1, 2, ...

Type of an agent i: θi = (ai , di ,wi ) ∈ T × TR>0

The item is allocated in some period t ∈ [ai , di ]

The value for allocation of the single item in some t: wi

Payment p is collected from the agent

Quasi linear utility function: wi − p
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Example

=⇒ per hour

Let the next buyers with types:
I Buyer1: θ1 = (9:00, 11:00, 100)
I Buyer2: θ2 = (9:00, 11:00, 80)
I Buyer3: θ3 = (10:00, 11:00, 60)

Results:

* Buyer1 take item for 80$ in the 1st hour
* Buyer2 take item for 60$ in the 2nd hour
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Example Cont

Lie in the value:
θ1 = (9:00, 11:00, 61)
Results:

* Buyer2 take item for 61$ in
the 1st hour

* Buyer1 take item for 60$ in
the 2nd hour

Lie in the arrival time:
θ1 = (10:00, 11:00, 100)
Results:

* Buyer2 take item for 0$ in
the 1st hour

* Buyer1 take item for 60$ in
the 2nd hour
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Online Mechanism Model

Discrete time periods: T = 1, 2, ...

Set of feasible outcomes at time t.

Sequence of decisions at time t.

Type of an agent i: θi = (ai , di ,wi ) ∈ T × T ∈ R>0

Valuation function vi

Quasi linear utility function: wi − p

Arrival period is the first time the agent may report its type.

Valuation component may depend on choices and time
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Online Mechanism Model

Definition (Direct-Revelation Online M)

A direct-revelation online mechanism, M(π, x) restricts each agent to
making a single claim about its type, and defines decision policy
π = {πt}t∈T and payment policy x = {x t}t∈T where decision
πt(ht) ∈ K (ht) is made in state ht and payment x ti (ht) ∈ R is collected
from each agent i.

Example:

ht : list of reported agent types in period t (agent is allocated or not)

k : decision to allocate the item in current period to some agent that
is present and unallocated

Definition (Limited Misreports)

Let C (θi ) ⊆ Θi for θi ) ∈ Θi denote the set of available misreports to an
agent with true type θi .
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Online Mechanism Model

No early arrival misreports: a′i ≥ ai

No late departures: d ′i ≤ di

Agent wasn’ t there

Definition (Truthful -DSIC)

Online mechanism M = (π, x) is truthful (or dominant strategy incentive
compatible - DSIC) given limited misreports C if

vi (θi , π(θi , θ
′
−i ))− p(θi , θ

′
−i ) ≥ vi (θi , π(θ∗i , θ

′
−i ))− p(θ∗i , θ

′
−i )

22/53



Online Mechanism Model

Definition (critical value)

The critical value for agent i given type θi = (ai , di , (ri )) and
deterministic policy π in a single-valued domain:

v(ai ,di ) =

{
min r ′i s.t πi (θ

′
i , θ−i ) = 1, for θ′i

∞ if no such r ′i exists

* Critical value: the bid under which agent i is not allocated any item

Definition (Monotonic Decision Policy)

Agent i gets an item when bidding ri ⇒
still gets an item when bidding r ′i > ri .
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Online Mechanism Model

Theorem

A monotonic decision policy can be truthfully implemented using the
critival values as payments.

Theorem

A decision policy that is truthfully implementable in and individually
rational (IR) mechanism with the extra contrain that only reasonable
missreporting is allowed must be monotonic
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Competitive Analysis

Perform worst-case analysis

A sequence of types are generated by an adversary ⇒ the
performance becomes as bad as possible

How effectively is our online algorithm with that of an optimal offline
algorithm with full information about agent types
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Lower Bounds-Online Mechanism

Theorem

No truthful, IR, and deterministic online auction can obtain a (2− ε)-apx
for efficiency in the expiring items environment with no early-arrival and no
late-departure misreports, for any constant ε > 0.

Theorem

No truthful, IR, and deterministic online auction can obtain a constant-apx
for efficiency in the expiring items environment with no early-arrival
misreports but arbitrary misreports of departure.
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Secretary Problem

Job applicants: N

Each applicant has a rank

While interviewing the rank of the current applicant is learnt relative
to the others who were interviewed

The interviewer must make an irrevocable decision about whether or
not to hire.

Goal: Maximize the probability of selecting the best applicant.

An adversary can choose an arbitrary set of N qualities but not the
order (the order of the applicants is sampled uniformly at random).

Optimal Policy:
* interview the first t − 1 applicants.
* hire the first subsequent applicant that is better than all the previous

t − 1 applicants.

What is the best t?

Turns out it’s an 1/e fraction of N
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Adaptive Limited-Supply Auction

An online mechanism is c-competitive for revenue if

minE
{
Rev(p(θz))

R∗(θ(z))

}
≥ 1

c

The optimal policy has:
I Learning phase
I Accepting phase

Observe bN/ec reports and then price at the maximal value p
received ⇒ Sell to the first agent to subsequently report a value
greater than this price.
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Adaptive Limited-Supply Auction
Auction:

In period τ When the bN/ecth bid is received, let p ≥ q be the bid
values

If p is still present in period τ then sell it to that agent at price q.
(break ties randomly)

Else, sell to the next agent to bid a price at least p at price p

Example:

Let the next agents with
types:

I θ1 = (1, 7, 6)
I θ2 = (3, 7, 2)
I θ3 = (4, 8, 4)
I θ4 = (6, 7, 8)
I θ5 in later period
I θ6 in later period

Transition to accepting
phase occurs when agent
b6/ec = 2 bids

I 4: wins in t=6 for p=6

If θ1 = (5, 7, 6)
I 1: wins in t=5 for p=4

p = 6, q = 2: 1 wins 2

If θ1 = (1, 2, 6): sold to 4
in t=6
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Adaptive Limited-Supply Auction

Theorem

Previous auction is strongly truthful in the single-unit, limited supply
environmnent with no early-arrival misreports

Theorem

Previous auction is e+o(1)-competitive for efficiency in the single-unit,
limited supply environmnent in the limit as N →∞
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