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Cournot Competition

• There is more than one firm and all firms produce a
homogeneous product.

• Firms do not cooperate.

• Firms have market power, i.e. each firm’s output decision
affects the good’s price.

• The number of firms is fixed.

• Firms compete in quantities, and choose quantities
simultaneously.

• The firms are economically rational and act strategically,
usually seeking to maximize profit given their competitors’
decisions.
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Example 1: Cournot Competition

• n firms: 1, 2, . . . , n.

• Firm i chooses a quantity qi , cost function ci (qi ) = cqi .
Total quality produced: Q =

∑n
i=1 qi .

• Inverse demand function (price): F (Q), Q > 0.

• Profit function for firm i : Πi (q1, . . . , q2) = F (Q)qi − cqi .

• Define a function P:

P(q1, q2, . . . , qn) = q1q2 . . . qn(F (Q)− c).

• For all i , for all q−i ∈ Rn−1
+ , for all qi , xi ∈ R+,

Π(qi , q−i )− Π(xi , q−i ) > 0 iff P(qi , q−i )− P(xi , q−i ) > 0.

• P is an ordinal potential function.
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Example 2: Cournot competition

• Cost functions arbitrarily differentiable ci (qi ).

• Inverse demand function F (Q) = a− bQ, a, b > 0.

• Define a function P∗:

P∗(q1, . . . , qn) = a
n∑

j=1

qj−b
n∑

j=1

q2
j −b

∑
1≤i<j≤n

qiqj−
n∑

j=1

cj(qj).

• Then, for all i , for all q−i ∈ Rn−1
+ , for all qi , xi ∈ R+,

Π(qi , q−i )− (xi , q−i ) = P∗(qi , q−i )− P∗(xi , q−i ).

• P∗ is a potential function.
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Potential Games

• Γ(u1, u2, . . . , un) a game in strategic form.

• N = {1, 2, . . . , n} the set of players.

• Y i the set of strategies of player i and
Y = Y 1 × Y 2 × . . .× Y n.

• ui : Y → R the payoff function of player i .

Ordinal Potential

P : Y → R is an ordinal potential function if, ∀ i ∈ N,
∀ y−i ∈ Y−i ,

ui (y−i , x)− ui (y−i , z) > 0 iff P(y−i , x)− P(y−i , z) > 0

∀x , z ∈ Y i .
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• Let w = (w i )i∈N be a vector of positive numbers (weights).

w -Potential

P : Y → R is a w-potential function if, ∀ i ∈ N, ∀ y−i ∈ Y−i ,

ui (y−i , x)− ui (y−i , z) = w i (P(y−i , x)− P(y−i , z))

∀x , z ∈ Y i .

• When not interested in particular weights we say that P is a
weighted potential.
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Exact Potential

P : Y → R is a potential function if it is a w-potential with
w i = 1 for every i ∈ N.
Alternatively, ∀ i ∈ N, ∀ y−i ∈ Y−i ,

ui (y−i , x)− ui (y−i , z) = P(y−i , x)− P(y−i , z)

∀x , z ∈ Y i .

Example:
The Prisoner’s Dilemma game G with

G =

(
(1,1) (9,0)
(0,9) (6,6)

)
admits a potential

P =

(
4 3
3 0

)
.
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• The set of all strategy profiles that maximize the potential P
is a subset of the equilibria set.

• The potential function is uniquely defined up to an additive
constant (i.e. if P1, P2 are potentials for the game Γ, then
there is a constant c such that P1(y)− P2(y) = c , ∀y ∈ Y ).

• Thus, the argmax set of the potential does not depend on a
particular potential function.

• The argmax set of P can be used to predict equilibrium
points, in some cases.

Corollary

Every finite ordinal potential game possesses a pure-strategy
equilibrium.
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Finite Improvement Property

Path

A path in Y is a sequence γ = (y0, y1, . . .) such that ∀k ≥ 1 there
exists a unique player i such that yk = (y−ik−1, x) for some

x 6= y i
k−1.

Improvement Path

A path γ is an improvement path if ∀k ≥ 1, ui (yk) > ui (yk−1),
i is the unique player with the above property at step k.

Finite Improvement Property (FIP)

A game has the FIP if every improvement path is finite.
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• Every maximal Finite Improvement Path terminates in an
equilibrium point.

• Every finite ordinal potential game has the FIP.

• Having the FIP is not equivalent to having an (ordinal)
potential.

Generalized Ordinal Potential

P : Y → R is a generalized ordinal potential, if ∀x , z ∈ Y i ,

ui (y−i , x)− ui (y−i , z) > 0 =⇒ P(y−i , x)− P(y−i , z) > 0.

∀x , z ∈ Y i

• A finite game Γ has the FIP ⇐⇒ Γ has a generalized ordinal
potential.
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• Finite path γ = (y0, y1, . . . , yN), v = (v1, v2, . . . , vn). Define:

I (γ, v) =
n∑

k=1

[v ik (yk)− v ik (yk−1)],

where ik is the unique deviator at step k .

• Closed path:y0 = yN .

• Simple closed path: yl 6= yk for every 0 ≤ l 6= k ≤ N − 1 and
y0 = yN .

• Length of simple closed path: The number of distinct vertices
in it, l(γ).
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Theorem

Γ is a game in strategic form. The following are equivalent:

1. Γ is a potential game.

2. I (γ, u) = 0 for every finite closed path γ.

3. I (γ, u) = 0 for every finite simple closed path γ.

4. I (γ, u) = 0 for every finite simple closed path γ of length 4.

Proof.
(2) =⇒ (3) =⇒ (4): obvious.
(1) =⇒ (2): If P is a potential for Γ and γ = (y0, y1, . . . , yN) a
closed path, then by the definition of the potential,

I (γ, u) = I (γ, (P,P, . . . ,P)) = P(yN)− P(y0) = 0.
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Proof (cont.)

(2) =⇒ (1): I (γ, u) = 0 for every closed path γ. Fix a z ∈ Y .

• For every two paths γ1, γ2 that connect z to a y ∈ Y ,
I (γ1, u) = I (γ2, u).

• Indeed, if γ1 = (z , y1, . . . , yN), γ2 = (z , z1, . . . , zM) and
yN = zM = y , then µ is the closed path

µ = (z , y1, . . . , yN , zM−1, . . . , z)

and I (µ, u) = 0⇒ I (γ1, u) = I (γ2, u).

• For every y ∈ Y , γ(y) is the path connecting z to y .

• Define P(y) = I (γ(y), u), ∀y ∈ Y .
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Proof (cont.)

• P is a potential for Γ.

• P(y) = I (γ, u), for every γ that connects z to y .

• i ∈ N, y−i ∈ Y−i , a 6= b ∈ Y i .

• γ = (z , y1, . . . , (y−i , a)) and µ = (z , y1, . . . , (y−i , a), (y−i , b)).

• Then, we have

P(y−i , b)−P(y−i , a) = I (µ, u)−I (γ, u) = ui (y−i , b)−ui (y−i , a).
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Proof.
Proof (cont.) (4) =⇒ (2) I (γ, u) = 0 for every γ with l(γ) = 4.

• If I (γ, u) 6= 0 for a closed path γ, then l(γ) = N ≥ 5.

• We can assume that I (µ, u) = 0 whenever l(µ) < N.

• γ = (y0, y1, . . . , yN) and i(j) the unique deviator at step j :

yj+1 = (y
−i(j)
j , x(i(j))).

• Assume i(0) = 1. Since yN = y0, ∃ 1 ≤ j ≤ N − 1: i(j) = 1.

• If i(1) = 1, let µ = (y0, y2, . . . , yN). Then
I (µ, u) = I (γ, u) 6= 0 but l(µ) < N. Contradiction!
The same holds if i(1) = N − 1.

• Thus, 2 ≤ j ≤ N − 2.
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Proof (cont.)

• µ = (y0, y1, . . . , yj−1, zj , yi+1, . . . , y − N) where

zj = (y
−[i(j−1),1]
j−1 , y

i(j−1)
j−1 , y1

j+1).

• Then,
I ((yj−1, yj , yj+1, zj), u) = 0.

• I (µ, u) = I (γ, u) and i(j − 1) = 1.

• Continuing recursively we get a contradiction!
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Congestion Games

• N = {1, 2, . . . , n} the set of players.

• M = {1, 2, . . . ,m} the set of facilities.

• Σi the set of strategies for player i .
Ai ∈ Σi , non-empty set.
Σ = ×i∈NΣi .

• cj the vector of payoffs, j ∈ M.
cj(k) the payoff to each user of facility j if there are exactly k
users.

• σj(A) = ]{i ∈ N : j ∈ Ai}, number of users of facility j .



Examples Potential Games Potential vs Congestion games

Theorem

Every congestion game is a potential game.

Proof.
For each A ∈ Σ define

P(A) =
∑

j∈∪ni=1A
i

σj (A)∑
l=1

cj(l)

 .

P is a potential.

Theorem

Every finite potential game is isomorphic to a congestion game.
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thank you!
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