Corelab Seminar

Panagiotis Charalampopoulos
Single-Source Shortest Paths and Strong Connectivity in Dynamic Planar Graphs

Efficient algorithms for computing and processing additively weighted Voronoi diagrams on planar graphs have been instrumental in obtaining several recent breakthrough results, most notably the almost-optimal exact distance oracle for planar graphs [Charalampopoulos et al., STOC'19], and subquadratic algorithms for planar diameter [Cabello, SODA'17, Gawrychowski et al., SODA'18]. In this paper, we show how Voronoi diagrams can be useful in obtaining dynamic planar graph algorithms and apply them to classical problems such as dynamic single-source shortest paths and dynamic strongly connected components.
First, we give a fully dynamic single-source shortest paths data structure for planar weighted digraphs with Õ(n4/5) worst-case update time and O(log2 n) query time. Here, a single update can either change the graph by inserting or deleting an edge, or reset the source s of interest. All known non-trivial planarity-exploiting exact dynamic single-source shortest paths algorithms to date had polynomial query time. Further, note that a data structure with strongly sublinear update time capable of answering distance queries between all pairs of vertices in polylogarithmic time would refute the APSP conjecture [Abboud and Dahlgaard, FOCS'16].
Somewhat surprisingly, the Voronoi diagram based approach we take for single-source shortest paths can also be used in the fully dynamic strongly connected components problem. In particular, we obtain a data structure maintaining a planar digraph under edge insertions and deletions, capable of returning the identifier of the strongly connected component of any query vertex. The worst-case update and query time bounds are the same as for our single-source distance oracle. To the best of our knowledge, this is the first fully dynamic strong-connectivity algorithm achieving both sublinear update time and polylogarithmic query time for an important class of digraphs.