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Introduction
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Definition

P =
⋃

k∈N TIME
(
nk
)
.

Definition

P/poly =
⋃

k∈N SIZE
(
nk
)
.

Lemma

P ( P/poly.
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Circuit Lower Bounds



Question (OPEN)

NP
?
⊆ P.

Question (OPEN)

NP
?
⊆ P/poly.



Question

NP
?
⊆ NC0.

Lemma

NP 6⊆ NC0.

Question

NP
?
⊆ AC0.

Theorem ([FSS81, Ajt83, Yao85, Hås86])

⊕ /∈ AC0.

Corollary

NP 6⊆ AC0.



Question

NP
?
⊆ AC0[p].

Theorem ([Raz87, Smo87])

MODq /∈ AC0[p].

Corollary

NP 6⊆ AC0[p].

Question (OPEN)

NP
?
⊆ ACC0.

Theorem ([MW18])

NQuasiP 6⊆ ACC0.



Circuit Analysis Notions



Definition (Satisfiability)

Input : A Boolean circuit C : {0, 1}n → {0, 1} from a circuit

class C.

Question : Is there any x ∈ {0, 1}n such that C (x) = 1?



Definition (Minimum Circuit Size Problem [KC00])

Input : The truth table tt(f ) ∈ {0, 1}2
n

of a Boolean function

f : {0, 1}n → {0, 1} and an integer 1 ≤ s ≤ 2n.

Question : Is there any Boolean circuit C : {0, 1}n → {0, 1} of

size |C | ≤ s that computes f ?



Definition (Learning [Val84, KV94])

Let 0 < ε, δ < 1.

Input : An oracle for some Boolean function f : {0, 1}n →
{0, 1} from a circuit class C.

Output : A circuit h : {0, 1}n → {0, 1}, such that

Pr
x∼{0,1}n

[h(x) 6= f (x)] ≤ ε,

with probability at least 1− δ.



Definition (Compression [CKK+14])

Input : The truth table tt(f ) ∈ {0, 1}2
n

of some Boolean

function f : {0, 1}n → {0, 1} from a circuit class C.

Output : A circuit C of size o(2n/n) that computes f .



Definition (Natural Properties [RR94])

Let

• Fn denote the set of all Boolean functions on n variables,

• D be some complexity class, and

• s : N→ N is a size function.

A D-natural property useful against C[s] is an algorithm

A : {0, 1}2
n

→ {0, 1} such that

1. A is computable in D,

2. if f ∈ C[s], then A(tt(f )) = 0, and

3. Prg∼Fn [A(tt(g)) = 1] ≥ 1
2 .



Definition (PRGs)

Let F be a class of functions on n variables and ε > 0. We say that

G : {0, 1}s → {0, 1}n is a PRG that ε-fools F if∣∣∣∣ Pr
y∼{0,1}s

[f (G (y)) = 1]− Pr
x∼{0,1}n

[f (x) = 1]

∣∣∣∣ ≤ ε,
for all f ∈ F .



Known Connections



Compression Learning Natural Properties

Satisfiability

PRGs MCSP Lower Bounds



PRGs Lower Bounds
[NW88]

PRGs Lower Bounds
[NW88, IW97, IW98]



Satisfiability Lower Bounds
[KL80, Wil10]

Satisfiability Lower Bounds
[IMP12]



MCSP Natural Properties



Natural Properties Natural Properties∗



Satisfiability Natural Properties∗
[Oli13]



Natural Properties Lower Bounds
[IKW01, Wil13]

Natural Properties∗ Lower Bounds
[Wil13]



Natural Properties Learning
[CIKK16]

Natural Properties Learning
[Vol14, IKV18]



Compression Learning
[OS17]



Compression Natural Properties

Compression Natural Properties
[CIKK16]



Satisfiability Learning
[BCKT94]

Satisfiability Learning
[BajpaiKK+19]



Learning Lower Bounds
[FK06, KKO13, Vol14, OS17]

Learning Lower Bounds
[LMN89]



MCSP Lower Bounds
[Wil13]



Compression Lower Bounds
[IKW01, Oli13, Wil13, CKK+14]

Compression Lower Bounds
[CKK+14]



Example: Learning to Lower Bounds



Learning Lower Bounds
[FK06, KKO13, Vol14, OS17]



Learning Lower Bounds
[FK06]



Theorem ([FK06])

Let s : N→ N be a (polynomially-bounded) size function.

Let C[s] ⊆ P/poly be a circuit class exactly learnable in time

t := 2s
o(1)

from membership and equivalence queries.

Then, EXPNP 6⊆ C[s].

Note: The learning algorithm runs in subexponential time.



Definition

Let f ∈ C[s] with f : {0, 1}n → {0, 1}.

∀x ∈ {0, 1}n : MQ(x) = f (x).



Definition

Let f ∈ C[s] with f : {0, 1}n → {0, 1}.

For all hypotheses (circuits) h : {0, 1}n → {0, 1} we have that

EQ(h) =

{
1, if h(x) = f (x) for all x ∈ {0, 1}n,

y : h(y) 6= f (y), otherwise.



Theorem ([FK06])

Let s : N→ N be a (polynomially-bounded) size function.

Let C[s] ⊆ P/poly be a circuit class exactly learnable in time

t := 2s
o(1)

from membership and equivalence queries.

Then, EXPNP 6⊆ C[s].

Note: The learning algorithm runs in subexponential time.



Proof.

1. Assume that EXPNP ⊆ C[s] ⊆ P/poly. (∗)

2. This implies EXPNP = P#P.

3. Thus PERM is complete for EXPNP.

4. Now use the (time-t) learning algorithm to show

PERM ∈ SUBEXPNP := TIME
(

2n
o(1)
)NP

.

5. This yields EXPNP ⊆ SUBEXPNP. A contradiction!



Proof.

1. Assume that EXPNP ⊆ C[s] ⊆ P/poly. (∗)

2. This implies EXPNP = P#P.

3. Thus PERM is complete for EXPNP.

4. Now use the (time-t) learning algorithm to show

PERM ∈ SUBEXPNP := TIME
(

2n
o(1)
)NP

.

5. This yields EXPNP ⊆ SUBEXPNP. A contradiction!



Proof (continued).

Assume that EXPNP ⊆ C[s] ⊆ P/poly.

This implies EXPNP = P#P, as

EXPNP ⊆ P/poly
[BH92]
=⇒ EXPNP = EXP,

EXP ⊆ P/poly
[BN91]
=⇒ EXP = MA,

and

MA ⊆ PH ⊆ P#P.



Proof (continued).

1. Assume that EXPNP ⊆ C[s] ⊆ P/poly. (∗)

2. This implies EXPNP = P#P.

3. Thus PERM is complete for EXPNP.

4. Now use the (time-t) learning algorithm to show

PERM ∈ SUBEXPNP := TIME
(

2n
o(1)
)NP

.

5. This yields EXPNP ⊆ SUBEXPNP. A contradiction!



Proof (continued).

1. Assume that EXPNP ⊆ C[s] ⊆ P/poly. (∗)

2. This implies EXPNP = P#P.

3. Thus PERM is complete for EXPNP.

4. Now use the (time-t) learning algorithm to show

PERM ∈ SUBEXPNP := TIME
(

2n
o(1)
)NP

.

5. This yields EXPNP ⊆ SUBEXPNP. A contradiction!



Proof (continued).

We will use the (time-t) learning algorithm to show

PERM ∈ SUBEXPNP,

by induction on i .

Here, i refers to the input matrices size, namely i × i .



Proof (continued).

Input: x ; a n × n Boolean matrix.

For i ← 1 to n:

a. If i = 1, then output the trivial circuit for PERM on 1× 1

matrices; else

b. Run the (time-t) exact learning algorithm to find Ci , the circuit

that computes PERM on i × i matrices.

c . Simulate MQ and EQ using Ci−1 and an NP oracle.

Output: Cn(x) = PERM(x).



Proof (continued).

Input: x ; a n × n Boolean matrix.

For i ← 1 to n:

a. If i = 1, then output the trivial circuit for PERM on 1× 1

matrices; else

b. Run the (time-t) exact learning algorithm to find Ci , the circuit

that computes PERM on i × i matrices.

c . Simulate MQ and EQ using Ci−1 and an NP oracle.

Output: Cn(x) = PERM(x).



Proof (continued).

Simulate MQ(y) = PERM(y), with |y | = i , using Ci−1.

Self-reduction: PERM(y) can be computed by i calls to Ci−1.

This runs in polynomial (in n) time as i ≤ n and Ci−1 is of polynomial (in

n) size.



Proof (continued).

Simulate EQ(h), with h : {0, 1}i → {0, 1}, using Ci−1 and an NP

oracle:

i . Ask the NP oracle:

“Does there exist a z ∈ {0, 1}i such that

h(z) 6= PERM(z)?”

ii . If NO, then h(x) = PERM(x) for all x ∈ {0, 1}i .

iii . If YES, then find z . Ask the NP oracle:

“Does there exist a z ∈ 0 {0, 1}i−1 such that

h(z) 6= PERM(z)?”

Repeat until all i bits of z are computed.

This runs in polynomial (in n) time as i ≤ n and h and Ci−1 are of

polynomial (in n) size.



Proof (continued).

Input: x ; a n × n Boolean matrix.

For i ← 1 to n:

a. If i = 1, then output the trivial circuit for PERM on 1× 1

matrices; else

b. Run the (time-t) exact learning algorithm to find Ci , the circuit

that computes PERM on i × i matrices.

c . Simulate MQ and EQ using Ci−1 and an NP oracle.

Output: Cn(x) = PERM(x).



Proof (continued).

What is the running time?

The running time of the previous procedure is

poly(n, t) = poly
(
n, 2s

o(1)
)
.

Note that s = poly(n); this yields PERM ∈ SUBEXPNP.



Proof.

1. Assume that EXPNP ⊆ C[s] ⊆ P/poly. (∗)

2. This implies EXPNP = P#P.

3. Thus PERM is complete for EXPNP.

4. Now use the (time-t) learning algorithm to show

PERM ∈ SUBEXPNP := TIME
(

2n
o(1)
)NP

.

5. This yields EXPNP ⊆ SUBEXPNP. A contradiction!

The proof is complete.



Discussion: OPEN Problems



Compression Learning Natural Properties

Satisfiability

PRGs MCSP Lower Bounds
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