
CIRCUITS, LOWER BOUNDS,

AND

CIRCUIT ANALYSIS ALGORITHMS

Dimitrios Myrisiotis

Dept. of Computing • Imperial College London (ICL)

Joint work (in progress) with M. Cheraghchi (ICL), Z. Lu (SFU), and N.

Rajgopal (Oxford).

Table of Contents

Introduction

Circuit Lower Bounds

Circuit Analysis Notions

Known Connections

Example: Learning to Lower Bounds

Discussion: OPEN Problems

Introduction

f : {0, 1}n → {0, 1}

1 . . .

σ

0 0 1 0.

q

0 � 1.

f (x) . . .

h

� � � �.

x1

x2

x3

C (x) = f (x)

Definition

P =
⋃

k∈N TIME
(
nk
)
.

Definition

P/poly =
⋃

k∈N SIZE
(
nk
)
.

Lemma

P (P/poly.

P

BPP NP

PH

PSPACE

EXP

AC0

TC0

AC0[p]

ACC0

P/poly

NEXP

NC0

Circuit Lower Bounds

Question (OPEN)

NP
?
⊆ P.

Question (OPEN)

NP
?
⊆ P/poly.

Question

NP
?
⊆ NC0.

Lemma

NP 6⊆ NC0.

Question

NP
?
⊆ AC0.

Theorem ([FSS81, Ajt83, Yao85, Hås86])

⊕ /∈ AC0.

Corollary

NP 6⊆ AC0.

Question

NP
?
⊆ AC0[p].

Theorem ([Raz87, Smo87])

MODq /∈ AC0[p].

Corollary

NP 6⊆ AC0[p].

Question (OPEN)

NP
?
⊆ ACC0.

Theorem ([MW18])

NQuasiP 6⊆ ACC0.

Circuit Analysis Notions

Definition (Satisfiability)

Input : A Boolean circuit C : {0, 1}n → {0, 1} from a circuit

class C.

Question : Is there any x ∈ {0, 1}n such that C (x) = 1?

Definition (Minimum Circuit Size Problem [KC00])

Input : The truth table tt(f) ∈ {0, 1}2
n

of a Boolean function

f : {0, 1}n → {0, 1} and an integer 1 ≤ s ≤ 2n.

Question : Is there any Boolean circuit C : {0, 1}n → {0, 1} of

size |C | ≤ s that computes f ?

Definition (Learning [Val84, KV94])

Let 0 < ε, δ < 1.

Input : An oracle for some Boolean function f : {0, 1}n →
{0, 1} from a circuit class C.

Output : A circuit h : {0, 1}n → {0, 1}, such that

Pr
x∼{0,1}n

[h(x) 6= f (x)] ≤ ε,

with probability at least 1− δ.

Definition (Compression [CKK+14])

Input : The truth table tt(f) ∈ {0, 1}2
n

of some Boolean

function f : {0, 1}n → {0, 1} from a circuit class C.

Output : A circuit C of size o(2n/n) that computes f .

Definition (Natural Properties [RR94])

Let

• Fn denote the set of all Boolean functions on n variables,

• D be some complexity class, and

• s : N→ N is a size function.

A D-natural property useful against C[s] is an algorithm

A : {0, 1}2
n

→ {0, 1} such that

1. A is computable in D,

2. if f ∈ C[s], then A(tt(f)) = 0, and

3. Prg∼Fn [A(tt(g)) = 1] ≥ 1
2 .

Definition (PRGs)

Let F be a class of functions on n variables and ε > 0. We say that

G : {0, 1}s → {0, 1}n is a PRG that ε-fools F if∣∣∣∣ Pr
y∼{0,1}s

[f (G (y)) = 1]− Pr
x∼{0,1}n

[f (x) = 1]

∣∣∣∣ ≤ ε,
for all f ∈ F .

Known Connections

Compression Learning Natural Properties

Satisfiability

PRGs MCSP Lower Bounds

PRGs Lower Bounds
[NW88]

PRGs Lower Bounds
[NW88, IW97, IW98]

Satisfiability Lower Bounds
[KL80, Wil10]

Satisfiability Lower Bounds
[IMP12]

MCSP Natural Properties

Natural Properties Natural Properties∗

Satisfiability Natural Properties∗
[Oli13]

Natural Properties Lower Bounds
[IKW01, Wil13]

Natural Properties∗ Lower Bounds
[Wil13]

Natural Properties Learning
[CIKK16]

Natural Properties Learning
[Vol14, IKV18]

Compression Learning
[OS17]

Compression Natural Properties

Compression Natural Properties
[CIKK16]

Satisfiability Learning
[BCKT94]

Satisfiability Learning
[BajpaiKK+19]

Learning Lower Bounds
[FK06, KKO13, Vol14, OS17]

Learning Lower Bounds
[LMN89]

MCSP Lower Bounds
[Wil13]

Compression Lower Bounds
[IKW01, Oli13, Wil13, CKK+14]

Compression Lower Bounds
[CKK+14]

Example: Learning to Lower Bounds

Learning Lower Bounds
[FK06, KKO13, Vol14, OS17]

Learning Lower Bounds
[FK06]

Theorem ([FK06])

Let s : N→ N be a (polynomially-bounded) size function.

Let C[s] ⊆ P/poly be a circuit class exactly learnable in time

t := 2s
o(1)

from membership and equivalence queries.

Then, EXPNP 6⊆ C[s].

Note: The learning algorithm runs in subexponential time.

Definition

Let f ∈ C[s] with f : {0, 1}n → {0, 1}.

∀x ∈ {0, 1}n : MQ(x) = f (x).

Definition

Let f ∈ C[s] with f : {0, 1}n → {0, 1}.

For all hypotheses (circuits) h : {0, 1}n → {0, 1} we have that

EQ(h) =

{
1, if h(x) = f (x) for all x ∈ {0, 1}n,

y : h(y) 6= f (y), otherwise.

Theorem ([FK06])

Let s : N→ N be a (polynomially-bounded) size function.

Let C[s] ⊆ P/poly be a circuit class exactly learnable in time

t := 2s
o(1)

from membership and equivalence queries.

Then, EXPNP 6⊆ C[s].

Note: The learning algorithm runs in subexponential time.

Proof.

1. Assume that EXPNP ⊆ C[s] ⊆ P/poly. (∗)

2. This implies EXPNP = P#P.

3. Thus PERM is complete for EXPNP.

4. Now use the (time-t) learning algorithm to show

PERM ∈ SUBEXPNP := TIME
(

2n
o(1)
)NP

.

5. This yields EXPNP ⊆ SUBEXPNP. A contradiction!

Proof.

1. Assume that EXPNP ⊆ C[s] ⊆ P/poly. (∗)

2. This implies EXPNP = P#P.

3. Thus PERM is complete for EXPNP.

4. Now use the (time-t) learning algorithm to show

PERM ∈ SUBEXPNP := TIME
(

2n
o(1)
)NP

.

5. This yields EXPNP ⊆ SUBEXPNP. A contradiction!

Proof (continued).

Assume that EXPNP ⊆ C[s] ⊆ P/poly.

This implies EXPNP = P#P, as

EXPNP ⊆ P/poly
[BH92]
=⇒ EXPNP = EXP,

EXP ⊆ P/poly
[BN91]
=⇒ EXP = MA,

and

MA ⊆ PH ⊆ P#P.

Proof (continued).

1. Assume that EXPNP ⊆ C[s] ⊆ P/poly. (∗)

2. This implies EXPNP = P#P.

3. Thus PERM is complete for EXPNP.

4. Now use the (time-t) learning algorithm to show

PERM ∈ SUBEXPNP := TIME
(

2n
o(1)
)NP

.

5. This yields EXPNP ⊆ SUBEXPNP. A contradiction!

Proof (continued).

1. Assume that EXPNP ⊆ C[s] ⊆ P/poly. (∗)

2. This implies EXPNP = P#P.

3. Thus PERM is complete for EXPNP.

4. Now use the (time-t) learning algorithm to show

PERM ∈ SUBEXPNP := TIME
(

2n
o(1)
)NP

.

5. This yields EXPNP ⊆ SUBEXPNP. A contradiction!

Proof (continued).

We will use the (time-t) learning algorithm to show

PERM ∈ SUBEXPNP,

by induction on i .

Here, i refers to the input matrices size, namely i × i .

Proof (continued).

Input: x ; a n × n Boolean matrix.

For i ← 1 to n:

a. If i = 1, then output the trivial circuit for PERM on 1× 1

matrices; else

b. Run the (time-t) exact learning algorithm to find Ci , the circuit

that computes PERM on i × i matrices.

c . Simulate MQ and EQ using Ci−1 and an NP oracle.

Output: Cn(x) = PERM(x).

Proof (continued).

Input: x ; a n × n Boolean matrix.

For i ← 1 to n:

a. If i = 1, then output the trivial circuit for PERM on 1× 1

matrices; else

b. Run the (time-t) exact learning algorithm to find Ci , the circuit

that computes PERM on i × i matrices.

c . Simulate MQ and EQ using Ci−1 and an NP oracle.

Output: Cn(x) = PERM(x).

Proof (continued).

Simulate MQ(y) = PERM(y), with |y | = i , using Ci−1.

Self-reduction: PERM(y) can be computed by i calls to Ci−1.

This runs in polynomial (in n) time as i ≤ n and Ci−1 is of polynomial (in

n) size.

Proof (continued).

Simulate EQ(h), with h : {0, 1}i → {0, 1}, using Ci−1 and an NP

oracle:

i . Ask the NP oracle:

“Does there exist a z ∈ {0, 1}i such that

h(z) 6= PERM(z)?”

ii . If NO, then h(x) = PERM(x) for all x ∈ {0, 1}i .

iii . If YES, then find z . Ask the NP oracle:

“Does there exist a z ∈ 0 {0, 1}i−1 such that

h(z) 6= PERM(z)?”

Repeat until all i bits of z are computed.

This runs in polynomial (in n) time as i ≤ n and h and Ci−1 are of

polynomial (in n) size.

Proof (continued).

Input: x ; a n × n Boolean matrix.

For i ← 1 to n:

a. If i = 1, then output the trivial circuit for PERM on 1× 1

matrices; else

b. Run the (time-t) exact learning algorithm to find Ci , the circuit

that computes PERM on i × i matrices.

c . Simulate MQ and EQ using Ci−1 and an NP oracle.

Output: Cn(x) = PERM(x).

Proof (continued).

What is the running time?

The running time of the previous procedure is

poly(n, t) = poly
(
n, 2s

o(1)
)
.

Note that s = poly(n); this yields PERM ∈ SUBEXPNP.

Proof.

1. Assume that EXPNP ⊆ C[s] ⊆ P/poly. (∗)

2. This implies EXPNP = P#P.

3. Thus PERM is complete for EXPNP.

4. Now use the (time-t) learning algorithm to show

PERM ∈ SUBEXPNP := TIME
(

2n
o(1)
)NP

.

5. This yields EXPNP ⊆ SUBEXPNP. A contradiction!

The proof is complete.

Discussion: OPEN Problems

Compression Learning Natural Properties

Satisfiability

PRGs MCSP Lower Bounds

Acknowledgements I

Many thanks to Igor Oliveira (Oxford) and Ryan Williams (MIT).

Acknowledgements II

Many thanks to Valentine Kabanets (SFU), Rahul Santhanam

(Oxford), and Igor Oliveira (Oxford).

Thank you!

References

[Ajt83] M. Ajtai.

Σ1
1-Formulae on Finite Structures.

Annals of Pure and Applied Logic, 24(1):1–48, 1983.

[BCKT94] Nader H. Bshouty, Richard Cleve, Sampath Kannan, and

Christino Tamon.

Oracles and queries that are sufficient for exact learning

(extended abstract).

In Proceedings of the Seventh Annual ACM Conference

on Computational Learning Theory, COLT 1994, New

Brunswick, NJ, USA, July 12-15, 1994., pages 130–139,

1994.

References

[BH92] Harry Buhrman and Steven Homer.

Superpolynomial Circuits, Almost Sparse Oracles and

the Exponential Hierarchy.

In FSTTCS, volume 652 of Lecture Notes in Computer

Science, pages 116–127. Springer, 1992.

[BN91] László Babai and Noam Nisan.

BPP has Subexponential Time Simulation unless

EXPTIME has Pubishable Proofs.

In Proceedings of the Sixth Annual Structure in

Complexity Theory Conference, Chicago, Illinois, USA,

June 30 - July 3, 1991, pages 213–219, 1991.

References

[CIKK16] Marco L. Carmosino, Russell Impagliazzo, Valentine

Kabanets, and Antonina Kolokolova.

Learning Algorithms from Natural Proofs.

In 31st Conference on Computational Complexity, CCC

2016, May 29 to June 1, 2016, Tokyo, Japan, pages

10:1–10:24, 2016.

[CKK+14] Ruiwen Chen, Valentine Kabanets, Antonina Kolokolova,

Ronen Shaltiel, and David Zuckerman.

Mining Circuit Lower Bound Proofs for Meta-algorithms.

In IEEE 29th Conference on Computational Complexity,

CCC 2014, Vancouver, BC, Canada, June 11-13, 2014,

pages 262–273, 2014.

References

[FK06] Lance Fortnow and Adam R. Klivans.

Efficient Learning Algorithms Yield Circuit Lower

Bounds.

In Learning Theory, 19th Annual Conference on Learning

Theory, COLT 2006, Pittsburgh, PA, USA, June 22-25,

2006, Proceedings, pages 350–363, 2006.

[FSS81] Merrick L. Furst, James B. Saxe, and Michael Sipser.

Parity, Circuits, and the Polynomial-Time Hierarchy.

In 22nd Annual Symposium on Foundations of

Computer Science, Nashville, Tennessee, USA, 28-30

October 1981, pages 260–270, 1981.

References

[Hås86] J. Håstad.

Almost Optimal Lower Bounds for Small Depth Circuits.

In Proceedings of the Eighteenth Annual ACM

Symposium on Theory of Computing, STOC ’86, pages

6–20, New York, NY, USA, 1986. ACM.

[IKV18] Russell Impagliazzo, Valentine Kabanets, and Ilya

Volkovich.

The Power of Natural Properties as Oracles.

In 33rd Computational Complexity Conference, CCC

2018, June 22-24, 2018, San Diego, CA, USA, pages

7:1–7:20, 2018.

References

[IKW01] Russell Impagliazzo, Valentine Kabanets, and Avi

Wigderson.

In Search of an Easy Witness: Exponential Time vs.

Probabilistic Polynomial Time.

In Proceedings of the 16th Annual IEEE Conference on

Computational Complexity, Chicago, Illinois, USA, June

18-21, 2001, pages 2–12, 2001.

[IMP12] Russell Impagliazzo, William Matthews, and

Ramamohan Paturi.

A Satisfiability Algorithm for AC0.

In Proceedings of the Twenty-Third Annual ACM-SIAM

Symposium on Discrete Algorithms, SODA 2012, Kyoto,

Japan, January 17-19, 2012, pages 961–972, 2012.

References

[IW97] Russell Impagliazzo and Avi Wigderson.

P = BPP if E Requires Exponential Circuits:

Derandomizing the XOR Lemma.

In Proceedings of the Twenty-Ninth Annual ACM

Symposium on the Theory of Computing, El Paso,

Texas, USA, May 4-6, 1997, pages 220–229, 1997.

[IW98] Russell Impagliazzo and Avi Wigderson.

Randomness vs. Time: De-Randomization under a

Uniform Assumption.

In 39th Annual Symposium on Foundations of Computer

Science, FOCS ’98, November 8-11, 1998, Palo Alto,

California, USA, pages 734–743, 1998.

References

[KC00] Valentine Kabanets and Jin-Yi Cai.

Circuit Minimization Problem.

In Proceedings of the Thirty-Second Annual ACM

Symposium on Theory of Computing, May 21-23, 2000,

Portland, OR, USA, pages 73–79, 2000.

[KKO13] Adam R. Klivans, Pravesh Kothari, and Igor Carboni

Oliveira.

Constructing Hard Functions Using Learning Algorithms.

In Proceedings of the 28th Conference on

Computational Complexity, CCC 2013, K.lo Alto,

California, USA, 5-7 June, 2013, pages 86–97, 2013.

References

[KL80] Richard M. Karp and Richard J. Lipton.

Some Connections Between Nonuniform and Uniform

Complexity Classes.

In Proceedings of the 12th Annual ACM Symposium on

Theory of Computing, April 28-30, 1980, Los Angeles,

California, USA, pages 302–309, 1980.

[KV94] Michael J. Kearns and Umesh V. Vazirani.

An Introduction to Computational Learning Theory.

MIT Press, 1994.

References

[LMN89] Nathan Linial, Yishay Mansour, and Noam Nisan.

Constant Depth Circuits, Fourier Transform, and

Learnability.

In 30th Annual Symposium on Foundations of Computer

Science, Research Triangle Park, North Carolina, USA,

30 October - 1 November 1989, pages 574–579, 1989.

[MW18] Cody Murray and R. Ryan Williams.

Circuit Lower Bounds for Nondeterministic

Quasi-Polytime: An Easy Witness Lemma for NP and

NQP.

In STOC, pages 890–901. ACM, 2018.

References

[NW88] Noam Nisan and Avi Wigderson.

Hardness vs. Randomness (Extended Abstract).

In 29th Annual Symposium on Foundations of Computer

Science, White Plains, New York, USA, 24-26 October

1988, pages 2–11, 1988.

[Oli13] Igor Carboni Oliveira.

Algorithms versus Circuit Lower Bounds.

CoRR, abs/1309.0249, 2013.

[OS17] Igor Carboni Oliveira and Rahul Santhanam.

Conspiracies Between Learning Algorithms, Circuit

Lower Bounds, and Pseudorandomness.

References
In 32nd Computational Complexity Conference, CCC

2017, July 6-9, 2017, Riga, Latvia, pages 18:1–18:49,

2017.

[Raz87] Alexander Razborov.

Lower Bounds on the Size of Bounded Depth Circuits

Over a Complete Basis with Logical Addition.

Mat. Zametki, 41(4):598–607, 1987.

English translation in Mathematical Notes of the

Academy of Sci. of the USSR, 41(4):333-338, 1987.

[RR94] Alexander A. Razborov and Steven Rudich.

Natural Proofs.

In Proceedings of the Twenty-Sixth Annual ACM

Symposium on Theory of Computing, STOC ’94, pages

204–213, New York, NY, USA, 1994. ACM.

References

[Smo87] Roman Smolensky.

Algebraic Methods in the Theory of Lower Bounds for

Boolean Circuit Complexity.

In Proceedings of the 19th Annual ACM Symposium on

Theory of Computing, 1987, New York, New York, USA,

pages 77–82, 1987.

[Val84] Leslie G. Valiant.

A Theory of the Learnable.

In Proceedings of the 16th Annual ACM Symposium on

Theory of Computing, April 30 - May 2, 1984,

Washington, DC, USA, pages 436–445, 1984.

References

[Vol14] Ilya Volkovich.

On Learning, Lower Bounds and (un)Keeping Promises.

In Automata, Languages, and Programming - 41st

International Colloquium, ICALP 2014, Copenhagen,

Denmark, July 8-11, 2014, Proceedings, Part I, pages

1027–1038, 2014.

[Wil10] Ryan Williams.

Improving Exhaustive Search Implies Superpolynomial

Lower Bounds.

In Proceedings of the 42nd ACM Symposium on Theory

of Computing, STOC 2010, Cambridge, Massachusetts,

USA, 5-8 June 2010, pages 231–240, 2010.

References

[Wil13] Ryan Williams.

Natural Proofs versus Derandomization.

In Symposium on Theory of Computing Conference,

STOC’13, Palo Alto, CA, USA, June 1-4, 2013, pages

21–30, 2013.

[Yao85] Andrew Chi-Chih Yao.

Separating the Polynomial-Time Hierarchy by Oracles

(Preliminary Version).

In 26th Annual Symposium on Foundations of Computer

Science, Portland, Oregon, USA, 21-23 October 1985,

pages 1–10, 1985.

	Introduction
	Circuit Lower Bounds
	Circuit Analysis Notions
	Known Connections
	Example: Learning to Lower Bounds

	Discussion: OPEN Problems

