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Statistical Estimation - Basic Setting

• Let D be an unknown distribution in Rd and θ “ θ pDq be some quantity
associated with it.

• Given X1, . . . , Xn i.i.d. samples from D, how can we design estimators
θ̂ “ θ̂ pX1,...,nq to approximate θ?

• Targets:
• small error (denoted by α).
• small probability of error exceeding α (denoted by β).
• sample efficiency (n “ Õ

´

poly
´

d, 1
α

, 1
β

¯¯

samples should suffice).
• computational efficiency (time complexity should be Õ ppoly pnqq).

4



Covariance Estimation

• Today’s focus: θ “ Σ “ E
X„D

”

pX ´ µq pX ´ µq
T

ı

.

• The problem has been studied extensively by the statistics and tcs
communities.

• The standard solution involves computing the sample covariance:

pΣ “
1
n

n
ÿ

i“1
pXi ´ µq pXi ´ µq

T .

• Why is this a good solution?
• For many distributions, the above is the MLE, which boasts a number of

desirable properties (asymptotic unbiasedness, consistency, asymptotic
minimization of MSE etc) and, in this case, it’s easy to compute
(computational efficiency).

• Optimality results are known for various distributions (e.g., Gaussians),
though stronger tools are required other distributions (e.g., heavy-tailed).

• What if privacy is an additional concern?
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Differential Privacy (DP)

• Privacy is a fundamental notion in the crypto/security community.
• DP is the main notion of privacy in statistical inference, where sensitive

data may be involved.

Definition (Differential Privacy - see [4])
A randomized algorithm M : X n Ñ Y satisfies pϵ, δq-DP if for every pair of
neighboring datasets1 X, X1 P X n:

@Y Ď Y : P rM pXq P Ys ď eϵP
“

M
`

X1
˘

P Y
‰

` δ.

• Depending on whether δ “ 0 or ą 0, we say that M satisfies pure DP or
approx DP, respectively.

• A related notion is that of Concentrated DP (CDP), which is known to be
intermediate to the previous two.

1If X and X1 are neighboring, they differ only on a single element.
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Remarks on the Definition

• The following lemma formalizes the connection among the variants of DP
claimed previously.

Lemma (see [3])
For every ϵ ě 0:

1. If M satisfies pϵ, 0q-DP, then M is ϵ2

2 -zCDP.

2. If M satisfies ϵ2

2 -zCDP, then M satisfies
´

ϵ2

2 ` ϵ
b

2 log
` 1

δ

˘

, δ
¯

-DP for
every δ ą 0.

• ϵ should be thought of as a small constant (e.g., between 0.1 and 5).
• δ should be thought of as cryptographically small (eg δ “ 1

ωpnq
).
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Properties of the Definition

Differential Privacy enjoys a number of very useful properties.

• Composition -> running multiple (potentially adaptively chosen) private
mechanisms over a dataset does not violate privacy guarantee (only
weakens it gradually).

• Closure under post-processing -> if the output of an algorithm is
guaranteed to be private, it can be used without privacy being
compromised.

• Group privacy -> datasets with Hamming distance greater than 1 still lead
to roughly similar outputs.
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Privatization

• How do we obtain DP algorithms from non-private ones?
• The main technique is by adding noise proportional to the sensitivity ∆f of

a non-private estimator f : X n Ñ Y:

∆f “ sup
X„hX1

›

›f pXq ´ f
`

X1
˘›

› ,

where }¨} is an appropriately chosen norm and X „h X1 implies that X, X1

have Hamming distance 1 (neighboring datasets).
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The Laplace Mechanism

• The Laplace mechanism is the main tool for pure DP.

Theorem
Let f : X n Ñ Rd be a function with ℓ1-sensitivity ∆f. Then the Laplace
mechanism2:

Mf pXq “ f pXq ` Lap
ˆ

∆f
ϵ

˙

Â

d
,

satisfies ϵ´DP.

2The Laplace distribution in one dimension Lap pbq has density g pxq “ 1
2b e´ |x|

b .
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The Gaussian Mechanism

• The Gaussian mechanism is the main tool for cDP.

Theorem
Let f : X n Ñ Rd be a function with ℓ2-sensitivity ∆f. Then the Gaussian
mechanism:

Mf pXq “ f pXq ` N

˜

0,

ˆ

∆f
?
2ρ

˙2
¨ I

¸

,

satisfies ρ-zCDP.
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Problem Formulation

Problem
Let D be a distribution over Rd with E

X„D
rXs “ 0 and unknown covariance

Σ “ E
X„D

“

XXJ
‰

. Give a DP estimator pΣ such that:

P
”›

›

›

pΣ ´ Σ
›

›

›

Σ
ą α

ı

ď β,

with as few samples as possible.

• For some of our results, we will assume that I ĺ Σ ĺ uI, u ą 0.
• The above is necessary to get pure DP and CDP guarantees (by lower

bounds).
• Observe that the above formulation prioritizes sample efficiency.
• Some of our estimators will be sample near-optimal but not time efficient

and others will be time efficient but statistically sub-optimal.
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Assumptions on D

• For the previous problem to be solvable, it is necessary to have some kind
of assumptions about the behavior of the data-generating distribution D.

• For some of our results, we will assume that D is a Gaussian distribution.
• This may be too restrictive, since it assumes that the distribution has a

Moment Generating Function (aka all moments exist and are bounded).
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Bounded Moments

Definition (Bounded Moments)
Let D be a distribution over Rd with mean µ and covariance Σ. We say that
X „ D has bounded moments of 2k-th order for some k ě 2 if there exists an
absolute constant C2k ě 1 such that, for every unit vector v, we have:

E
”

xv, X ´ µy
2k

ı

ď C2k E
”

xv, X ´ µy
2
ık

“

´

vTΣv
¯k

.

• The distributions satisfying this moment bound are known as
pC2k, 2kq-hypercontractive distributions.

• The above definition implies that, given X, X1 „ D, the distribution of
X´X1

?
2 also satisfies it. Thus, we may assume that µ “ 0.

• We will assume that C2k “ O p1q.
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Related Prior Work (pre-2021)

• Karwa and Vadhan in [12] perform mean and variance estimation in the
1´D setting with pϵ, δq ´DP.

• Kamath, Li, Singhal and Ullman [6] and Biswas, Dong, Kamath and
Ullman [2] perform covariance estimation for d´dimensional sub-Gaussian
distributions with CDP.

• Kamath, Singhal and Ullman [9] perform mean estimation for
d-dimensional distributions with a finite number of bounded moments
under CDP and pure DP.
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Today’s Results

Table 1: Sample Complexity Bounds for Covariance Estimation

Privacy Guarantee Gaussians Bounded Moments

CDP - Õ

˜

d2

α2 ` d
2` 1

2pk´1q

?
ρα

k
k´1

`
d

3
2 polyplog uq

?
ρ

¸

[7]

Approx DP Õ
´

d2

α2 ` d2

αϵ
` d2.5

ϵ

¯

[8] -

• Results for Gaussians under CDP were given in prior work.
• We believe our result for Gaussians under approx dp can also be

generalized to other classes of distributions, provided we have sufficiently
strong concentration properties.

• We also give a sample near-optimal but computationally inefficient
algorithm in [7] for pure DP under bounded moments, which we will not
present today in full detail, but may sketch at the end (time permitting).
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Other Recent Results (1)

• Liu, Kong and Oh in [11] define a general framework based on
Propose-Test-Release (PTR) to obtain sample-optimal but computationally
inefficient pϵ, δq-DP algorithms for a multitude of tasks (but not covariance
estimation) for data that comes from a hypercontractive distribution.
Their algorithms are robust to adversarial corruptions.

• Ashtiani and Liaw [1] define a general framework to reduce estimation
under pϵ, δq-DP to its non-private counterpart, again based on PTR. They
obtain a computationally efficient and statistically near-optimal algorithm
for covariance estimation for Gaussians that is also robust to adversarial
corruptions.
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Other Recent Results (2)

• Hopkins, Kamath and Majid [5] give the first computationally efficient and
statistically near optimal pure DP algorithm for mean estimation under
bounded moments using the Sum-of-Squares proofs to algorithms
framework. Their algorithm is also robust to adversarial corruptions.

• Kothari, Manurangsi and Velingker [10] define a general framework again
based on SoS to obtain computationally efficient but statistically
sub-optimal pϵ, δq-DP algorithms for a multitude of problems (including
covariance estimation) for sub-Gaussian distributions. Their algorithms are
also robust to adversarial corruptions.
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The Naive Approach for CDP

• Since we assume the mean to be 0, the sample covariance is:

pΣ “
1
n

n
ÿ

i“1
XiXT

i .

• This is unbounded, so we must truncate our data within a ball centered at
the origin.

• Since the distribution may be heavy-tailed, we can’t pick a truncation
radius such that all the dataset will be within the ball whp (as is the case
with sub-gaussian data).

• We end up having to consider 3 types of error. These are: bias error due
to truncation, noise error due to the DP requirement and sampling error
(the only inherent of the 3).
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The Naive Algorithm and its Analysis

• Why is the dependence on u prohibitive for Mahalanobis estimation?
• What is going on in the exponent of d for Mahalanobis estimation?
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Positive Definite Matrices as Ellipsoids

• There is a 1 ´ 1 correspondence between ellipsoids and positive definite
matrices.

• Let Σ be a positive definite matrix. Consider the set:

S “

!

x P Rd :
›

›

›
Σ´ 1

2 x
›

›

›

2
“ 1

)

“

!

x P Rd : xTΣ´1x “ 1
)

.

• If the matrix is diagonal, the equation is equivalent to
řd

i“1
x2

i
λi

“ 1, which
corresponds to an axis-aligned ellipsoid.

• For Σ non-diagonal, we have Σ “ UΛUT ùñ
řd

i“1
z2
i

λi
“ 1, where

z “ UTx. Thus, we also have an ellipsoid, but one aligned based on the
eigenvectors of Σ.
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Why the Bad Dependence on u?

• The truncation radius and, as a consequence, the intensity of the gaussian
noise we added, were calibrated based on the largest eigenvalue (the
“longest” principal direction of the ellipsoid).

• Thus, the “short” directions had a very small signal-to-noise ratio.
• Accounting for the loss along those directions leads to a blow-up in the

sample complexity!
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Intuition for the Solution

• What if, instead of going for a guarantee wrt the Mahalanobis norm, we
focused on the spectral norm instead?

• The spectral norm only takes into account the error along the longest
direction, so we don’t have to worry about the effect of the noise on the
other directions.

• Intuition: use this to obtain coarse estimates of the inverse of the
covariance matrix and use them to rescale the data and perform constant
factor progress in reducing the upper bound u on the condition number of
Σ (preconditioning).
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Preconditioning via Confidence Ellipsoids

• We use an approach inspired by [2] to perform the preconditioning step.
• The preconditioning process is:
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Intuition Behind the Preconditioning Step

• Assume we have a quantity χ we wish to estimate, such that 1
u ď χ ď 1

and we want rescale the data in a fashion that will narrow the range where
the resulting value may lie by increasing the lower bound 1

u and
maintaining 1 as the upper bound.

• Suppose we obtain an estimate x of χ such that x ´ ϵ ď χ ď x ` ϵ where
ϵ “ ϵ pnq that is a decreasing function of n with ϵ pnq Ñ 0.

• We have x´ϵ
x`ϵ

ď
χ

x`ϵ
ď 1.

• Observe that, if ϵ ăă x, we have x´ϵ
x`ϵ

“
1´ ϵ

x
1` ϵ

x
« 1.

• Thus, if 1
u is not very close to 1, assuming we have a non-trivial lower

bound on x (x “ Ω p1q instead of just x ą 0), we can pick n to be large
enough so that x´ϵ

x`ϵ
ě 2

u .
• The previous algorithm is the multidimensional analogue to this, where s

plays the role of ϵ, M plays the role of x and the construction of M1

ensures we have the aforementioned non-trivial lower bound.
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The Overall Algorithm

• The final sample complexity is Õ

˜

d2

α2 ` d
2` 1

2pk´1q

?
ρα

k
k´1

`
d

3
2 polyplog uq

?
ρ

¸

.

• The 2 ` 1
2pk´1q

term in the exponent of d is because of the truncation
radius we are forced to use to get dimension-independent bias error.
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Covariance Estimation Under Approx DP

• Unlike pure DP and CDP, having a priori bounds on the parameters of the
distribution is not necessary for approx DP estimation.

• To estimate the mean with known covariance (e.g., Σ “ I), it suffices to
run the Karwa and Vadhan algorithm over each component.

• For unknown covariance, the problem is non-trivial, due to the need of
identifying the principal components of the covariance matrix.
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Estimating the Eigenvalues

• Our first step is to output estimates of the eigenvalues, without outputting
estimates of the eigenvectors.

• This will help us identify multiplicative gaps between eigenvalues
λ1 ě ¨ ¨ ¨ ě λd ě 0 in order to decide whether preconditioning is necessary.

• We use stability-based histograms, which do not satisfy CDP, but only
approx DP.
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Preconditioning for Unbounded Gaussians

• For convenience, assume for the the time being that λd ą 0.
• If there are no multiplicative gaps between eigenvalues (e.g.,

λ1
λd

ď 1000 “ O p1q), preconditioning is not necessary at all.
• If there are gaps, we use an approach that involves iterating over all d

eigenvalues that is inspired by dynamic programming.
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Gaps Between Consecutive Eigenvalues - Coarse Preconditioning

• At the beginning of the k-th iteration, assume that λ1
λk

“ O p1q, but λk
λk`1

is large (we have no prior bound on how large).
• We need a preconditioner that will help us “close” the gap λk

λk`1
, regardless

of how large that may be.
• Truncate-and-noise doesn’t work!
• We use an algorithm that will help us identify the projection matrix of the

subspace spanned by the eigenvectors corresponding to the eigenvalues
λ1, . . . , λk.
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The Subspace Algorithm

• The algorithm requires Õ
`

d1.5˘

samples independently of the gap λk
λk`1

!
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The Coarse Preconditioner
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Cumulative Gaps - Fine Preconditioning

• Assume now that, at the k-th iteration, we have that λ1
λk`1

is large (e.g.,
larger than 1000) but we have upper bounds for λ1

λk
and λk

λk`1
.

• Then, we have an upper bound on λ1
λk`1

, so truncate-and-noise works!
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The Overall Algorithm

• Iterate over the eigenvalues and apply the coarse and fine preconditioners
in succession whenever a gap of either type is identified.

• If we have a zero eigenvalue, first identify the subspace corresponding to
the unknown covariance.

• The final sample complexity is Õ
´

d2

α2 ` d2

αϵ
` d2.5

ϵ

¯

.
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Recap

• We gave an algorithm that performs covariance estimation for heavy-tailed
data under CDP.

• We gave an algorithm that performs covariance estimation for Gaussian
data under approx DP with no dependence on u.

• We omitted an algorithm that performs covariance estimation under pure
DP for heavy-tailed data (but can discuss now, if time permits :) ).
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Directions for Future Work

• Private heavy tailed estimation with sub-gaussian rates.
• Make covariance estimation under pure DP computationally efficient.
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Questions?

* Your question here. *
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Thank You!
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