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Preliminaries



Statistical Estimation - Basic Setting

= Let D be an unknown distribution in RY and 8 = 6 (D) be some quantity
associated with it.

= Given Xi,..., X, i.i.d. samples from D, how can we design estimators
6 =6 (X1..,) to approximate 07
= Targets:

= small error (denoted by «).
= small probability of error exceeding o (denoted by ).

= sample efficiency (n = O (poly (d, é, %)) samples should suffice).
= computational efficiency (time complexity should be O (poly (n))).



Covariance Estimation

' . _— J— J— — T
Today's focus: 0 = ¥ = XDNED [(X w) (X —p) ]

= The problem has been studied extensively by the statistics and tcs
communities.

= The standard solution involves computing the sample covariance:

n
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= Why is this a good solution?
= For many distributions, the above is the MLE, which boasts a number of
desirable properties (asymptotic unbiasedness, consistency, asymptotic
minimization of MSE etc) and, in this case, it's easy to compute
(computational efficiency).
= Optimality results are known for various distributions (e.g., Gaussians),
though stronger tools are required other distributions (e.g., heavy-tailed).

= What if privacy is an additional concern? 9.



Differential Privacy (DP)

= Privacy is a fundamental notion in the crypto/security community.

= DP is the main notion of privacy in statistical inference, where sensitive
data may be involved.

Definition (Differential Privacy - see [4])

A randomized algorithm M : X" — Y satisfies (¢, 0)-DP if for every pair of
neighboring datasets® X, X' € X"

VYS YV :PM(X)e Y] <eP[M(X)e Y]+

= Depending on whether 6 = 0 or > 0, we say that M satisfies pure DP or
approx DP, respectively.

= A related notion is that of Concentrated DP (CDP), which is known to be
intermediate to the previous two.

Hf X and X are neighboring, they differ only on a single element.



Remarks on the Definition

= The following lemma formalizes the connection among the variants of DP

claimed previously.

Lemma (see [3])

For every e = 0:
1. If M satisfies (,0)-DP, then M is S-zCDP.

2. If M satisfies %-ZCDP, then M satisfies (% + €4/2log (%),6) -DP for
every § > 0.

= ¢ should be thought of as a small constant (e.g., between 0.1 and 5).

= § should be thought of as cryptographically small (eg § = ﬁ)




Properties of the Definition

Differential Privacy enjoys a number of very useful properties.

= Composition -> running multiple (potentially adaptively chosen) private
mechanisms over a dataset does not violate privacy guarantee (only
weakens it gradually).

= Closure under post-processing -> if the output of an algorithm is
guaranteed to be private, it can be used without privacy being
compromised.

= Group privacy -> datasets with Hamming distance greater than 1 still lead
to roughly similar outputs.



= How do we obtain DP algorithms from non-private ones?

= The main technique is by adding noise proportional to the sensitivity Ar of

a non-private estimator f: X" — ):

Af= sup Hf(X) - f(X')H ,

X X!

where |-| is an appropriately chosen norm and X ~, X' implies that X, X’
have Hamming distance 1 (neighboring datasets).



The Laplace Mechanism

= The Laplace mechanism is the main tool for pure DP.

Theorem

Let f: X" — RY be a function with {1-sensitivity As. Then the Laplace
mechanisn’:

M09 = 709 + Lap (1)

satisfies e—DP.

|x

2The Laplace distribution in one dimension Lap (b) has density g (x) = e b .



The Gaussian Mechanism

= The Gaussian mechanism is the main tool for cDP.

Theorem

Let f: X" — R? be a function with Ur-sensitivity Ar. Then the Gaussian

mechanism: 5
Me(X) = F(X) + N <o, (%) .11) :

satisfies p-zCDP.



Overview of Results
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Problem Formulation

Problem

Let D be a distribution over RY with XIED [X] = 0 and unknown covariance

Y = E [XX"]. Give a DP estimator Y such that:

X~D
rlle-2|, > o] <5
with as few samples as possible.

= For some of our results, we will assume that [ < ¥ < ull, v > 0.

= The above is necessary to get pure DP and CDP guarantees (by lower
bounds).

= Observe that the above formulation prioritizes sample efficiency.

= Some of our estimators will be sample near-optimal but not time efficient
and others will be time efficient but statistically sub-optimal.



Assumptions on D

= For the previous problem to be solvable, it is necessary to have some kind
of assumptions about the behavior of the data-generating distribution D.

= For some of our results, we will assume that D is a Gaussian distribution.

= This may be too restrictive, since it assumes that the distribution has a
Moment Generating Function (aka all moments exist and are bounded).
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Bounded Moments

Definition (Bounded Moments)

Let D be a distribution over RY with mean p and covariance ¥. We say that
X ~ D has bounded moments of 2k-th order for some k > 2 if there exists an
absolute constant Cox = 1 such that, for every unit vector v, we have:

E [<v,x— M>2k] < CxE [<v,x— M>2]k — (VTZV)k.

= The distributions satisfying this moment bound are known as
(Caok, 2k)-hypercontractive distributions.

= The above definition implies that, given X, X' ~ D, the distribution of
% also satisfies it. Thus, we may assume that ;. = 0.

= We will assume that Gx = O (1).



Related Prior Work (pre-2021)

= Karwa and Vadhan in [12] perform mean and variance estimation in the
1-D setting with (¢,6) —DP.

= Kamath, Li, Singhal and Ullman [6] and Biswas, Dong, Kamath and
Ullman [2] perform covariance estimation for d—dimensional sub-Gaussian
distributions with CDP.

= Kamath, Singhal and Ullman [9] perform mean estimation for
d-dimensional distributions with a finite number of bounded moments
under CDP and pure DP.
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Today’s Results

Table 1: Sample Complexity Bounds for Covariance Estimation

Privacy Guarantee Gaussians Bounded Moments
= 2+ sy
CDP _ o <;122 + d 2(:) + d2 poly( Iogu)) [7]
Vpa kT
Approx DP 1) (g—i + ; ) [8] -

= Results for Gaussians under CDP were given in prior work.

= We believe our result for Gaussians under approx dp can also be
generalized to other classes of distributions, provided we have sufficiently
strong concentration properties.

= We also give a sample near-optimal but computationally inefficient
algorithm in [7] for pure DP under bounded moments, which we will not
present today in full detail, but may sketch at the end (time permitting).
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Other Recent Results (1)

= Liu, Kong and Oh in [11] define a general framework based on
Propose-Test-Release (PTR) to obtain sample-optimal but computationally
inefficient (e, 6)-DP algorithms for a multitude of tasks (but not covariance
estimation) for data that comes from a hypercontractive distribution.
Their algorithms are robust to adversarial corruptions.

= Ashtiani and Liaw [1] define a general framework to reduce estimation
under (€, d)-DP to its non-private counterpart, again based on PTR. They
obtain a computationally efficient and statistically near-optimal algorithm
for covariance estimation for Gaussians that is also robust to adversarial

corruptions.
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Other Recent Results (2)

= Hopkins, Kamath and Majid [5] give the first computationally efficient and
statistically near optimal pure DP algorithm for mean estimation under
bounded moments using the Sum-of-Squares proofs to algorithms
framework. Their algorithm is also robust to adversarial corruptions.

= Kothari, Manurangsi and Velingker [10] define a general framework again
based on SoS to obtain computationally efficient but statistically
sub-optimal (e, §)-DP algorithms for a multitude of problems (including
covariance estimation) for sub-Gaussian distributions. Their algorithms are
also robust to adversarial corruptions.
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Heavy-Tailed Covariance Estimation with CDP

20



The Naive Approach for CDP

= Since we assume the mean to be 0, the sample covariance is:
1 n
- T
= Z; XX
=

= This is unbounded, so we must truncate our data within a ball centered at
the origin.

= Since the distribution may be heavy-tailed, we can’t pick a truncation
radius such that all the dataset will be within the ball whp (as is the case
with sub-gaussian data).

= We end up having to consider 3 types of error. These are: bias error due
to truncation, noise error due to the DP requirement and sampling error
(the only inherent of the 3).
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The Naive Algorithm and its Analysis

Algorithm 1 Naive Heavy Tailed Private Covariance Estimation
Input: X = (X,..., X,) ~ D®™. Parameters p,y > 0.
Output: A noised covariance matrix M.

1: procedure NAIVEHTPCE,, 45(X)

2 for i€ [n] do

3 Let Xigry = 1{X; € By (0)} Xi. & Truncate the samplos.
4 end for i

5 Leto =0 ().

6 Let M' =2 S Xiwra Xiey + N- &= N ~ GOE (¢2).2

7 Let M be the Buclidean projection of M’ onto the PSD cone.
8  return M.
9: end procedure

Theorem 3.1. For every p,y > 0, Algorithm 1 satisfies p-zCDP. Also, if Xi,..., Xy ~isa D
with E_[X] = 0,11 < £ <1 that satisfies Definition 2.1 for some 1 < Co, = O (1) and k > 2,

we have the following guarantees:

a3 1og(1
1. Setting y = CIFD - #, it suffices to have n = (%‘ET + ﬁ—(%) samples so
)
that | — M|, <a with pml)ubzlzty at least 1 — 3.

P T
o ud VIED jogh (L
to have n = O jﬁg + *,;M sam-
pra®T

2y
gy = OF R | _aiton A it suffi

ples so that X — MHL a urzth probability at least 1 — 3.

= Why is the dependence on u prohibitive for Mahalanobis estimation?

= What is going on in the exponent of d for Mahalanobis estimation?
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Positive Definite Matrices as Ellipsoids

= There is a 1 — 1 correspondence between ellipsoids and positive definite
matrices.

= Let X be a positive definite matrix. Consider the set:

SI= {XE R?: Hzfix)2 = 1} = {XG RY: x'¥'x = 1} .

= If the matrix is diagonal, the equation is equivalent to Z,‘.i:l § =1, which
corresponds to an axis-aligned ellipsoid.

= For ¥ non-diagonal, we have ¥ = UNUT — ¢ | /\ =1, where
z= U"x. Thus, we also have an ellipsoid, but one aligned based on the

eigenvectors of X.
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Why the Bad Dependence on u?

= The truncation radius and, as a consequence, the intensity of the gaussian
noise we added, were calibrated based on the largest eigenvalue (the
“longest” principal direction of the ellipsoid).

= Thus, the “short” directions had a very small signal-to-noise ratio.

= Accounting for the loss along those directions leads to a blow-up in the
sample complexity!
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Intuition for the Solution

= What if, instead of going for a guarantee wrt the Mahalanobis norm, we
focused on the spectral norm instead?

= The spectral norm only takes into account the error along the longest
direction, so we don't have to worry about the effect of the noise on the
other directions.

= Intuition: use this to obtain coarse estimates of the inverse of the
covariance matrix and use them to rescale the data and perform constant
factor progress in reducing the upper bound u on the condition number of
Y (preconditioning).
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Preconditioning via Confidence Ellipsoids

= We use an approach inspired by [2] to perform the preconditioning step.

= The preconditioning process is:

Algorithm 2 One Stop Heavy-Tailed Private Proconditioning via Confidence Elipsoids
Tnput: X — (X1,..., X) ~ D" Matrices A, L > 0 and Ca > 1,a, pr, i > 0.
d covariance)

Output: Matrices L (lower bound), A’ (symmetric) and M (no
L pmcedure ONESTEPHTPPCE A £,Cp 00 (X)
for i & [n] do

5 Wi = AX;. & Sw, = ATA,L < Sw, <1
2

e

7 5 (W),

8 Let Sdiag {M,..., A} ST m he eigendecomposition of M. = 88T =1
9 Letn,v be as defined in (1) and (5), respectively.

10 Lets=3+n+w & s : spectral error.
1 Let 1= [Amin (L) + 5,1 - s]. &= Assuming 5 < § (1= Awin ()4
i foric(ddo

1 Let X] be the projection of ), into interval I

14 end for

15 = Sding {N,..., X} §T & (i (L) + )T < My < (1-5)L

7% (My — sT)U~% and A’ — U3 A,
1 return L, A’ M,
19: end procedure

Theorem 3.2. For cvery p, > 0 and cvery possible input, Algorithm 2 mm/m e
Additionally, assume that A, L € R4 are symmetric PD matrices and (X
DO with [X] = 0,L = ASA < I that satisfies Definition

hen, if Ain (L) » a call to ONESTEPHTPPCE, -
b log(4
andn =0 (Ao J[(ﬂl yields symmetric PD matrices A', L' such that L' < A'SA’ < 1
‘ o
and Ain (L') = 2\ i (L) with probability at least 1 — f,.

and k > 2.

1
i
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Intuition Behind the Preconditioning Step

= Assume we have a quantity y we wish to estimate, such that % <x<l1
and we want rescale the data in a fashion that will narrow the range where
the resulting value may lie by increasing the lower bound % and
maintaining 1 as the upper bound.

= Suppose we obtain an estimate x of x such that x — e < x < x+ ¢ where
€ = ¢(n) that is a decreasing function of n with € (n) — 0.

X—€ X
= We have S 1.
. _ 1-<
= Observe that, if € << x, we have e=E Ll
=

s Thus, if % is not very close to 1, assuming we have a non-trivial lower
bound on x (x = Q (1) instead of just x > 0), we can pick n to be large

enough so that %7 > %

= The previous algorithm is the multidimensional analogue to this, where s
plays the role of €, M plays the role of x and the construction of M;
ensures we have the aforementioned non-trivial lower bound.
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The Overall Algorithm

Algorithm 3 Heavy Tailed Private Covariance Estimation
Input: (X1,...,X,) ~D®" u>0withl <% <ul, te N*,Co = 1,p1,...,p,6 > 0.
Output: A (ZZJ:[ pl) zCDP (wstmmt(\, 3 of 3.
: procedure HT _PCEy ¢y, 1,01...0,0(X1,..0)
Let Ag = il], Ly = ﬁ]IA

1

2 =

3: for i€ [t—1] do
4

(Ai, Li, M;) = ONe_Step_HT_PPCE, . 1Ot s i1, 38 (X1,...n)-
5: end for
6: for i € [n] do
(8 Wi :A,,,,X,-.
8: end for

Cl(kl 1) 114}(!:7{)
L.
(1)@
10: M, = NAIvuiHTiPCEmm% (Wi,..n)-
11: return A, M, AL
12: end procedure

9: Let v =

~ 245l 3
= The final sample complexity is O iz 4 & Z(kkl) + d2polyllogy)
@ 1 VP
Vpa
= The 2 + 2(k 7y term in the exponent of d is because of the truncation

radius we are forced to use to get dimension-independent bias error.
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Approx DP Estimation for Unbounded Gaussians
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Covariance Estimation Under Approx DP

= Unlike pure DP and CDP, having a priori bounds on the parameters of the
distribution is not necessary for approx DP estimation.

= To estimate the mean with known covariance (e.g., £ = 1), it suffices to
run the Karwa and Vadhan algorithm over each component.

= For unknown covariance, the problem is non-trivial, due to the need of
identifying the principal components of the covariance matrix.
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Estimating the Eigenvalues

= Our first step is to output estimates of the eigenvalues, without outputting
estimates of the eigenvectors.

= This will help us identify multiplicative gaps between eigenvalues
A1 = -+ = Ag = 0in order to decide whether preconditioning is necessary.

= We use stability-based histograms, which do not satisfy CDP, but only
approx DP.

‘Algorithm 1: Differentially Private Figenvaluekstimator, » ;(X)

Input: Samples X;,
Output: Noisy cigenv:

€ R4, Parameters £, 5,8 > 0.
s of X: (Ay,.... Aq) € RY.
Set parameters: t « SRELD o |nft)

Split X into t datasets of size m: X, .., X"
// Estimate the eigenvalues via DP Histograms.

Fori1...d

Lt

be the i-th cigenvalue of L - X/7x/.

o) into @ (..., [1V2,1/2)[1/2/4 1)[1,2'4), [2V4,V2),... } U ([0.0]).

25| -DP histogram on all 2/ over @

If no bucket is returned
Return .
Let [1, ] be a non-empty bucket returned.
Set ;1.
Sort (A1, Aa) to get ..., A

Return (4;,...,45)

Theorem 3.1. For every &,3, f > 0, there exists an (¢, 5)-DP algorithm, that takes
. O[d /2 polylog(d, 1/3,1/c, \//?7)

samples from N(0,5). for an arbitrary symmetric, positive-semidefinite X € R, and outputs i, > --- >
A4, such that with probability at least 1 - O(f), 4; € % ﬁa,<>,)| foralli.
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Preconditioning for Unbounded Gaussians

= For convenience, assume for the the time being that Ay > 0.

= If there are no multiplicative gaps between eigenvalues (e.g.,
i—i < 1000 = O (1)), preconditioning is not necessary at all.

= If there are gaps, we use an approach that involves iterating over all d
eigenvalues that is inspired by dynamic programming.
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Gaps Between Consecutive Eigenvalues - Coarse Preconditioning

= At the beginning of the k-th iteration, assume that i—i =0O(1), but /\iil
is large (we have no prior bound on how large).
= We need a preconditioner that will help us “close” the gap Aiil’ regardless

of how large that may be.
= Truncate-and-noise doesn't work!

= We use an algorithm that will help us identify the projection matrix of the
subspace spanned by the eigenvectors corresponding to the eigenvalues
ALy eees Ak
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The Subspace Algorithm

Algorithm 2: DP Subspace Estimator SubspaceRecovery, 5, (X)

Input: Samples Xy, .., X, € R%. Parameters ¢, 5, a,y,k > 0.
Output: Projection matrix IT € R of rank k.

CoVdk-polylog(d,

Set parameters:

e m e |n/t] g Cik
CoyVd(Vk+y/in(ke))
 m

re

Sample reference points p;, o from N (0,1) independently.

// Subsample from X, and form projection matrices
Forjel,....t
Let XI = (X(-tymers -+ Xjm) € R
Let I1; € R%* be the projection matrix onto the subspace spanned by the eigenvectors of
XJ(X/)T € R%4 corresponding to the largest k eigenvalues.
Foriel,...,q
Pl = Wp;
// Aggregate using a ball-finding algorithm.
Fori € [g]
Let P; € R be the dataset, where column j is p;.
Set ¢; « GoodCenter__.__ 5 (P)).

Vamao 4"
Set R « Cyry/log(1)
// Return the subspace.
1RygIn(q/3)

Leto .
For eachi € [q]
Truncate all p/’s to within Bg(c;).
'
Letp; — 3 pl + N(0,0%Laxa).
=1

Let rj — (Pir- -2 Pg)- R
Let IT be the projection matrix of the top-k subspace of P.
Return I1.

Ak |
Ak41”

» The algorithm requires O (d"*) samples independently of the gap
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The Coarse Preconditioner

Algorithm 3: Differentially Private CoarsePreconditioner, s g.; (X)

Input: Samples Xj,....X, € R4, Parameters ¢, 5, Bk>07>0.
Output: Matrix A € R%d,

Set1—ny.

Set My, — SubspaceRecovery, s 5 - (X) and Meypg — 1- T
Set A e (1= )Tl + Mgspea.

Return A.

Theorem 5.1 (Coarse Preconditioner). Let 0 <y < 1 and0 < § < 1 be arbitrary paramelers. Then for
alle, 5, > 0 and

2
- d” - polylog(d. %, 5, ‘J)),

s
there exists an (¢, 5)-DP algorithm, such that the falIDw.ing holds. Let X = (Xy,...,X,) be iid samples
Sfrom N(0,%), where, for some1 <k <d, ﬁ‘;? > 7%, andy? A“'(L) |L 4y | l'hen wrthpmbab!lxly
Akt (A2A) o

at least 1~ O(p), the algorithm takes X and y as input, and UutpulsA € R that satisfies A 2 40
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Cumulative Gaps - Fine Preconditioning

= Assume now that, at the k-th iteration, we have that A;\il is large (e.g.,
larger than 1000) but we have upper bounds for i—i and AZ\L'

A .
= Then, we have an upper bound on Alerl' so truncate-and-noise works!

Algorithm 4: Differentially Private FinePreconditioner, s 7, (X)

Input: Samples Xy, ..., X,, € R%. Parameters ¢, 8, f, k.7, x > 0.
Output: Matrix A € R4,

Set Z  NaiveEstimator,,s,sx(X).

Let § « {i: 4i(2) > “‘,‘—;,”)

Letg; «

Let o; be the i-th eigenvector of Z.

Setfls « 3 = and [T < 3 v0].
ey TS T g

Set A T +1T5.

Return A.

Theorem 5.2 (Fine Preconditioner). Let X = (Xy, .., X,) be i.id. samples from N (0,%), such that for
some1 <k <d %48 > 27 fory < 1. Then for all &,§ > 0, there exists an (,8)-DP algorithm, such

that if
o &2 - polylog(d, 1, 3, )
z = i
then with probability at least 1-O(p), it takes X as input, and outputs a matrix A that satisfies 4520 >
-
7.
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The Overall Algorithm

= Iterate over the eigenvalues and apply the coarse and fine preconditioners
in succession whenever a gap of either type is identified.
= If we have a zero eigenvalue, first identify the subspace corresponding to

the unknown covariance.

= The final sample complexity is ) (% + é + dzf).
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Conclusions and Future Work
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= We gave an algorithm that performs covariance estimation for heavy-tailed
data under CDP.

= We gave an algorithm that performs covariance estimation for Gaussian
data under approx DP with no dependence on w.

= We omitted an algorithm that performs covariance estimation under pure
DP for heavy-tailed data (but can discuss now, if time permits :) ).
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Directions for Future Work

= Private heavy tailed estimation with sub-gaussian rates.

= Make covariance estimation under pure DP computationally efficient.
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Questions?

* Your question here. *
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Thank You!

AA
g
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